top of page

Роль нового оборудования в обучении физике

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики в форме числа. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления.

Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента нет, и не может быть, рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию. Первые мысли учителя должны быть направлены на то, чтобы учащийся видел опыт и проделывал его сам, видел прибор в руках преподавателя и держал его в своих собственных руках. Однако если учащиеся будут проделывать различные опыты и наблюдать за демонстрацией опытов, выполняемых учителем, но не будут слышать продуманных ярких рассказов преподавателя, не будут решать задач, не будут читать учебника и знакомиться с литературой, то такую работу учителя еще нельзя назвать удовлетворительной. Преподавание предполагает широкое использование эксперимента, обсуждение со школьниками особенностей его постановки и наблюдаемых результатов.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Обучение физике нельзя представить только в виде теоретических занятий, даже если учащимся на занятиях показываются демонстрационные физические опыты. Ко всем видам чувственного восприятия надо обязательно добавить на занятиях “работу руками”. Это достигается при выполнении учащимися лабораторного физического эксперимента, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические.

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Очень важно, чтобы в процессе обучения физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение.

Физика - экспериментальная наука. Вследствие этого обучение физике должно опираться в первую очередь на экспериментальный метод, согласно которому в процессе обучения необходимо проводить демонстрационные опыты, учащимся выполнять фронтальные лабораторные работы и физические практикумы. Для успешной реализации экспериментального метода обучения необходима хорошая учебно-материальная база, которая формируется в школьном кабинете физики. Где он находится, знают все: и те, кто изучает физику, и те, кому еще это предстоит. Это особый кабинет, там всегда происходит что-то интересное, поэтому, проходя по школьному коридору, дети с любопытством заглядывают в открытую дверь, желая понять, что же там происходит. А основной вопрос, который задают ученики перед моим уроком, звучит так: "А что мы сегодня будем смотреть?"

Оборудование в кабинете физики, почти не обновляемое, либо вышло из строя, либо морально устарело. Проводить демонстрации, а уж тем более лабораторные работы, не всегда возможно. А ведь физика не является предметом мела и доски".

Перемены происходят в связи с изменением задач, стоящих перед современным обществом. Развитие наукоемких технологий породило острую потребность в инженерных кадрах, и государство, обратило свое внимание на оснащение учебного процесса. В кабинетах физики стали появляться , компьютеры, проекторы, интерактивные доски, новое оборудование.

Если происходит использование оборудования, то на уроке не будет равнодушных и отвлекающихся, обязательно всем будет интересно. Глядя в глаза своих учеников на таком уроке, я вижу неподдельный интерес.Не смотря на утверждения скептиков, что главным на уроке является учитель, и никакой компьютер не сможет его заменить, умелое сочетание традиционных и современных форм обучения делает урок интереснее, насыщеннее и главное эффективнее.

В качестве примера приведу рядовой урок по теме "Конвекция". Начинаю его я с демонстрации золотой карусели, которой люди украшают свой дом в канун Нового года, зажигаю свечи и прошу детей объяснить, почему карусель вращается. (Приложение1) Так необычно мы переходим к изучаемой теме. Конвекцию в жидкостях показываю традиционно, правда, используя прибор, полученный в прошлом году, поскольку его применение делает демонстрацию более наглядной, чем подогревание подкрашенной воды в обычной колбе. (Приложение1) А потом начинается самое интересное: я объясняю детям работу компьютерной лаборатории, знакомлю с принципом действия датчиков температуры, показываю, как идет их настройка и начинаю эксперимент по смешиванию двух жидкостей разной температуры. (Приложение1) Дети с восторгом следят за тем, как компьютер вычерчивает графики изменения температуры жидкостей во времени, просят не выходить из программы, хотя уже давно температурные кривые сравнялись. и эксперимент успешно завершен. Обсуждая применение конвекции в природе и технике, демонстрирую ученикам анимацию "Схема образования дневного и ночного бризов" из компьютерной программы "Библиотека наглядных пособий", ООО "Дрофа", 2004. (Приложение1)

Без сомнения такая демонстрация выглядит куда более интересней, чем даже самый эмоциональный рассказ учителя. Сочетание различных форм демонстраций делает урок увлекательным и насыщенным, на таком уроке интересно и учителю, и ученикам. Ответы на вопросы по данной теме свидетельствуют о высоком качестве усвоения материала.

Нельзя утверждать, что использование всех возможностей кабинета физики облегчает работу преподавателя, время подготовки к уроку, несомненно, увеличивается, но это компенсируется резким ростом познавательного интереса на уроке, ростом творческого потенциала педагога и его учеников. Такой кабинет физики можно по праву считать отвечающим всем требованиям к современному школьному кабинету.

Организация работы с программированными электронными учебниками, контролирующими программами и программами-практикумами возможна только в режиме обеспечения каждого участника группы персональным компьютером. Именно в этом случае достигается максимальная эффективность использования электронных ресурсов для целей интенсификации обучения и приобщения учащихся к информационным технологиям в ходе обучения физике.

При использовании локальной компьютерной сети открываются совсем новые пути индивидуализации обучения. Учитель может сочетать групповой и индивидуальный режимы работы. Так на уроке, посвященном закреплению материала, одна часть учащихся может выполнять тест по теме прямо на компьютере. Вторая часть при этом самостоятельно меняет режимы компьютерной симуляции и готовится к демонстрации этой компьютерной модели с рассказом о наблюдаемых явлениях и их закономерностях. В ходе их рассказа этот фрагмент уже демонстрируется на все мониторы в режиме отсутствия звукового сопровождения. Третья группа учащихся может собирать таблицу с объектами, в которой представлено использование данного физического явления на практике, и затем выступить перед учащимися, когда уже на все мониторы будет подаваться одно и то же изображение с собранной ими таблицей. Четвертая группа – несколько раз просмотрит видеофрагмент лабораторного эксперимента и попытается реализовать его на демонстрационном столе из блоков, приготовленных учителем.

В случае выбора общеклассной формы проведения занятий полезно использовать различные библиотеки электронных наглядных пособий и созданные на их основе презентации по теме урока.

Видеофрагменты полезно использовать при недостаточной укомплектованности кабинета физики средствами, позволяющими проводить демонстрационные опыты и эксперименты. Видеофрагменты по месту съемки могут быть разбиты на натурные и лабораторные.

Натурные видеосъемки демонстрируют использование физических принципов в работе современной техники. Такие видеофрагменты без сомнения украсят урок с передачей новой информации учащимся. Достаточно традиционно на уроках сначала рассматриваются теоретические принципы, в основе которых лежат лабораторные эксперименты, а затем применение этих принципов в технике. Такой ход изложения повторяет последовательность этапов реального познания мира физикой. Однако не следует забывать, что цель учителя поставить перед учеником интересную задачу, заинтересовать проблемой. Именно в этом случае урок оказывается эмоционально окрашенным, появляется мотивация к изучению нового материала и он лучше усваивается. Поэтому, интересный эпизод, снятый в реальной практике, можно поставить в начале урока, чтобы в течение урока ответить на вопрос, как же это происходит.

С помощью компьютерных анимаций можно показывать схемы процессов, объяснение протекания которых связано со знанием структуры вещества на атомно-молекулярном (давление газов, протекание тока, ядерные реакции) или планетарном уровне (образование ветров, магнитное поле Земли, солнечное затмение). Кроме того, их удобно использовать для демонстрации в динамике принципов действия технических устройств (насос, множительный аппарат, двигатель и т.д.), в которых невозможно увидеть процесс в ходе работы механизма. Третий тип анимаций призван облегчить введение абстрактных понятий, физических величин, которые связаны с изменением какого-либо параметра во времени (движение относительно разных систем отсчета, ускорение как изменение вектора скорости, правило буравчика и т.д.).

Например, анимация, включенная в состав библиотеки электронных наглядных пособий фирмы “1C” (рисунок 1), показывает аналогию между соединениями труб и электрических проводников, что позволяет наглядно продемонстрировать учащимся принципы распределения токов в электрических цепях с параллельным и последовательным соединениями проводников. Такая же гидродинамическая аналогия рассматривается в учебнике физики Касьянова В.А., что позволяет повысить степень информативности моделей учебника.

спектр современных технических средств, поддерживающих информационные и коммуникационные технологии, достаточно обширен и может быть определен следующими основными компонентами.

· Компьютер – универсальное устройство обработки информации; основная конфигурация современного компьютера обеспечивает учащемуся широкие мультимедийные возможности.

· Ноутбук – компьютер, легко переносимый в портфеле, который, вместе с легким мультимедийным проектором может обеспечить аудиовизуальную поддержку выступления учителя, использоваться для подготовки учителем занятия в любом помещении школы или дома.

· Принтер – позволяет фиксировать на бумаге информацию, найденную и созданную учащимися или учителем.

· Мультимедийный проектор, подсоединяемый к компьютеру, видеомагнитофону или телевизору – технологический элемент новой грамотности, радикально повышает уровень наглядности в работе учителя, дает возможность для учащихся представлять результаты своей работы всему классу.

· Интерактивная доска сенсорный экран, подсоединенный к компьютеру, изображение с которого передает на доску проектор. Достаточно только прикоснуться к поверхности доски, чтобы начать работу на компьютере. Специальное программное обеспечение позволяет работать с текстами и объектами, аудио- и видеоматериалами, Internet-ресурсами, делать записи от руки прямо поверх открытых документов и сохранять информацию. Интерактивная доска предоставляет уникальные возможности для работы и творчества учителя и ученика.

· Устройства для записи или ввода визуальной и звуковой информации (сканер, цифровой фотоаппарат, цифровая видеокамера) – дают возможность непосредственно включать в учебный процесс информационные образы окружающего мира.

· Устройства вывода звуковой информации – наушники для индивидуальной работы со звуковой информацией и громкоговорители с оконечным усилителем для озвучивания всего класса. В комплект с наушниками часто входит индивидуальный микрофон для ввода речи учащегося.

· Устройства регистрации данных (датчики с интерфейсами) – существенно расширяют область физических экспериментов, предоставляют возможность для компьютерной обработки данных.

· Устройства, обеспечивающие создание локальной компьютерной сети (концентратор, сетевые платы, сервер) – позволяют более эффективно использовать имеющиеся информационные и технические ресурсы, обеспечивают общий доступ к сети Internet.

· Телекоммуникационный блок (модем) – дает доступ к российским и мировым информационным ресурсам, позволяет вести дистанционное обучение, вести переписку с другими школами.

· Мультимедийный лингафонный комплект – предоставляет целый ряд преимуществ и новых возможностей по сравнению с обычным компьютерным классом, оснащенным локальной сетью. Основной возможностью такого компьютерного класса является звуковая и видеосвязь учителя с каждым учащимся в отдельности или группой учащихся, а также речевая и видеосвязь учащихся, объединенных в группу между собой.

bottom of page